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Syllabus

Français : Méthodes perturbatives pour la modélisation

La modélisation repose sur une palette d’outils de mathématiques appliquées. Le livre “Advanced
mathematical methods for scientists and engineers”, de Carl M. Bender et Steven A. Orszag ([]),
présente des méthodes asymptotiques très courantes en physique. Le cours est centré sur une
lecture active de cet ouvrage en se concentrant sur un choix de chapitres particulièrement perti-
nents pour la mécanique des fluides. Une approche des fonctions spéciales (Airy, Bessel, . . . ) est
effectuée à l’aide des séries de Frobenius, solutions d’équations différentielles linéaires. Les méth-
odes de la phase stationnaire et du col, très présentes dans l’étude des ondes et des instabilités,
permettent de décrire le comportement asymptotique d’intégrales à grand paramètres. Enfin,
trois méthodes asymptotiques sont incontournables dans de nombreux problèmes de recherche :
analyse de couche limite, théorie WKB et méthode des échelles multiples. Au-delà de ces ob-
jectifs principaux du cours, assimilés au moyen de nombreux exercices, une sensibilisation aux
contenus des autres chapitres du livre est visée.

English: Perturbation methods for modelling

Modelling is based on a range of applied mathematics tools. The book "Advanced mathematical
methods for scientists and engineers", by Carl M. Bender and Steven A. Orszag ([]), presents
very common asymptotic methods in physics. The course focuses on an active reading of this
book focusing on a selection of chapters particularly relevant for fluid mechanics. An approach
of special functions (Airy, Bessel, ...) is performed using a Frobenius series, solutions of linear
differential equations. The methods of the stationary phase and steepest descent, very present
in the study of waves and instabilities, can describe the asymptotic behaviour of integrals with
large parameters. Finally, three asymptotic methods are unavoidable in many research problems:
boundary layer analysis, WKB theory and multiple scales methods. Beyond these main objectives
of the course, assimilated through many exercises, an outreach to the contents of other chapters
of the book is targeted.

References

[] Carl M. Bender et Steven A. Orszag, Advanced mathematical methods for scientists and
engineers, McGraw-Hill 

[] http://mooc.inp-toulouse.fr/ → Mathématiques → Perturbative Methods
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Chapter 

Exercices for the oral presentation

The goal of this course is to become familiar with the book “Advanced mathematical methods
for scientists and engineers” ([]), which content can be useful for a wide variety of research
subjects, more particularly in the domain of Fluid Mechanics (S. Orszag has be a pioneer in
Fluid Mechanics and C. Bender has worked on quantum mechanics). The subtitle of the book,
“Asymptotic Methods and Perturbation Theory”, indicates that the focus is made on applications.

Teaching the content of the whole book would require a large amount of hours. Here, a guided
tour inside the book is organized through a series of chosen exercices. These exercices can
reasonably be taught during a  hour class. The exercices with the tag “optional” can be added
for a very intensive teaching or for a  hour class.

The answers of these exercices are to be found, most of the time, in the reference book ([]). In
a few cases, solutions, hints or complementary explanations are proposed.

Physical applications are briefly evocated in some places to motivated the course.

Readers are encouraged to register to the following pedagogical plaform (password: masterdet)
and create their own account (connexion → autres utilisateurs → Première visite):

http://mooc.inp-toulouse.fr/ → Mathématiques → Perturbative Methods

They will find guidance to solve the exercices or deposit contributions. They are encouraged to
solve exercices taken from the book and describe them, with hints about the solution, on the
pedagogical platform.

. Ordinary Differential Equations

.. Variation of parameters

Example , p. 

Solve the following equation with the parameter variation method: y′′ − 3 y′ + 2 y = e4x.

Answer

The general solution is y(x) = c1 e
x + c2 e

2x + 1
6 e

4x where c1 and c2 are constants.

Method

The solution of the homogeneous equation is yh(x) = u1 y1(x) + u2 y2(x) with y1 = exp(x) and







y2 = exp(2x), where u1 and u2 are constants.

We look at solutions y(x) = u1(x) y1(x) + u2(x) y2(x) such that:

u′1(x) y1(x) + u′2(x) y2(x) = 0 . (.)

Since Ly1 = Ly2 = 0 and Ly = f(x) with L = d2

dx2
− 3 d

dx + 2 and f(x) = exp(4x), we have:

u′1(x) y′1(x) + u′2(x) y′2(x) = f(x) . (.)

We can then compute:

u′1 = −f y2/W and u′2 = f y1/W with W =

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ . (.)

Replacing y1, y2 and f with their expression, we get W = exp(3x), u′1 = − exp(3x) and
u′2 = exp(2x), leading to the solution.

.. Green function

Example , p. 

Solve with the Green function method the equation y′′ − y = 1/ coshx with y(±∞) = 0.

Answer

The Green function is G(x, a) = 1
2 e
−|x−a|. The general solution:

y(x) = −1

2

∫ ∞
−∞

e−|x−a| f(a) da .

reads
y(x) = −ex ln

√
e−2x + 1− e−x ln

√
e2x + 1 .

One can prove that y(±∞) = 0. This result could have been found using the constants variation
method.

Physical applications

The Green function of the Laplace equation is defined by ∆G = δ(x) with G bounded at infinity.
It reads G = 1/(4π ‖x‖) for x ∈ IR3. It explains the Biot and Savart law for electrostatics as
well as many other physical applications. It reads G = −Ln ‖x‖/(2π) for x ∈ IR2.

The Green function of the Helmoltz equation is defined by ∆G+k2G = δ(x) with G bounded at
infinity. It reads G = ei k ‖x‖/(4π ‖x‖) for x ∈ IR3 and G = ei k |x|/(2 i k) for x ∈ IR. It is widedly
used for waves applications, where k is the wave number.

. Difference Equations

.. Gamma function

Example , p. , Figure ., p. , Exercice ., p. ,

The Gamma function is defined by Γ(z) =
∫∞

0 e−t tz−1 dt for Re(z) > 0.
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• Show that Γ(1) = Γ(2) = 1

• Show that Γ(1/2) =
√
π

• Show that Γ(z + 1) = z Γ(z)

The Gamma function is extended to the complex plan with this last relation.

• Show that z = 0,−1,−2, ... are simple poles

• Compute the residues of Γ(z) for these poles

. Approximate Solution of Linear Differential Equations

.. Singular points

Exercice ,, p. 

Classify all the singular points (finite and infinite) of the following equations:

• Airy equation: y′′ = x y

• Bessel equation: x2 y′′ + x y′ + (x2 − ν2) y = 0

• Hypergeometric equation: x (1− x) y′′ + [c− (a+ b+ 1)x] y′ − a b y = 0

• Parabolic cylinder equation: y′′ +
(
ν + 1

2 −
1
2x

2
)
y = 0

• Mathieu equation: y′′ + [h− 2 θ cos(2x)] y = 0

Answer

We set t = 1/x for the point x0 =∞ leading to d
dx = −t2 d

dt and d2

dx2
= −t4 d2

dt2
+ 2 t3 d

dt .

Airy equation: all the finite points are regular. Since g(t) = y(1/x) satisfies g′′+2 g′/t2−g/t3 = 0,
x0 = ±∞ are irregular singular points.

Bessel equation: the point x0 = 0 is a regular singular point. All the other finite points are
regular. The points x0 = ±∞ are irregular singular points.

Hypergeometric equation: the points x0 = 0 and x1 = 1 are regular singular points. All the
other finite points are regular. The points x0 = ±infty are irregular singular points.

Parabolic cylinder and Mathieu equations: all the finite points are regular. The points x0 = ±∞
are irregular singular points.

Physical applications

The Airy equation describe the transition between oscillatory and evanescent waves.

Looking for solution of the Helmoltz equation ∆u+u = 0 in D or D lead to the Bessel equations.
In the D case, these solution described, for instance, the oscillation modes of a drum.

The parabolic cylinder equation are derived from the Schrödinger equation for a particule in a
harmonic potential.

The Mathieu equation describe the dynamics of and oscillator forced by a periodic signal and is
used to describe parmaetric instabilites.
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.. Airy functions

Example , p. , Figure ., p. 

Compute the series y(x) =
∑∞

n=0 an x
n solutions of the Airy equations y′′ = x y.

.. Frobenius method

Section ., p. 

Describe the Frobenius method for

Ly = y′′ +
p(x)

x
y′ +

q(x)

x2
= 0 , (.)

where p(x) =
∑∞

n=0 pn x
n and where q(x) =

∑∞
n=0 qn x

n are analytic functions in a vicinity of
the regular singular point x = 0.

Apply the Frobenius method for the modified Bessel equation :

y′′ +
1

x
y′ −

(
1 +

ν2

x2

)
y = 0 , (.)

where ν ∈ R. Consider the four cases:
) 2 ν /∈ N, ) ν = 1

2 +N with N ∈ N, ) ν = 0 and ) ν = 1.

We denote the modified Bessel function Iν(x) by:

Iν(x) =

∞∑
n=0

(
1
2 x
)2n+ν

n! Γ(ν + n+ 1)
. (.)

Description of the Frobenius method cases

We consider Frobenius series y(x) = xα
∑∞

n=0 an x
n and compute

Ly(x, α) = xα a0 P (α) + xα
∞∑
n=1

[an P (α+ n) + fn] (.)

with P (α) = α2 + (p0 − 1)α + q0 and fn =
∑n−1

k=0 [(α+ k) pn−k + qn−k] ak. We denotes by
α1 ≤ α2 the two roots of P (α).

I α1 − α2 /∈ N
II α1 − α2 = N ∈ N

II(a) N = 0, α1 = α2

II(b) N 6= 0, α1 = α2 +N

II(b)(i) fN 6= 0

II(b)(ii) fN = 0

Table .: Discussion for the Frobenius methods where α1 ≤ α2 are the two roots of P (α).

If y(x, α) = xα
∑∞

n=0 an(α)xn, we note that ∂
∂αy(x, α) = y(x, α) lnx+

∑∞
n=0

∂an
∂α (α)xn.

Application to the modified Bessel functions
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) 2 ν /∈ N: case I of the Frobenius method. Iν(x) and I−ν(x) are the basic solutions.

) ν = 1
2 + N with N ∈ N: case II(b)(ii) of the Frobenius method. Iν(x) and I−ν(x) are the

basic solutions.

) ν = 0: case II(a) of the Frobenius method. In addition to I0(x), one uses K0(x) defined by:

K0(x) = −
[
ln

(
1

2
x

)
+ γ

]
I0(x) +

∞∑
n=0

(
1
2 x
)2n

(n!)2

(
1 +

1

2
+

1

3
+ ...+

1

n

)
, (.)

where γ = 0.5772... is the Euler’s constant.

) ν = 1. Case I of the Frobenius method. In addition to I1(x), one uses K1(x) defined by:

K1(x) =

[
ln

(
1

2
x

)
+ γ

]
I1(x) +

1

x
− x

4
−
∞∑
n=0

(
1
2 x
)2n+1

n! (n+ 1)!

(
1 +

1

2
+

1

3
+ ...+

1

n
+

1

2n+ 2

)
.

(.)

Physical applications

Special function are useful tools in physics. They appear as solutions of ordinary differential
equations. The Frobenius methods is a way to compute or define them with series.

.. Irregular singular points

Exercice ., p.  and Example , p. 

By setting y(x) = eS(x) or y(x) = eSa(x)+C(x) where S(x) ∼ Sa(x), find the asymptotic behavior
of y(x) for x→ +∞ for the following equations:

(a) Modified Bessel equation: x2 y′′ + x y′ − (x2 + ν2) y = 0.

(b) Parabolic cylinder equation: y′′ + (ν + 1
2 −

1
4 x

2) y = 0.

(c) Airy equation: y′′ = x y.

Algebra

If we denote by y′′ + a(x) y′ + b(x) y = 0 the differential equation and set y = eS(x), we obtain
S′′ + (S′)2 + aS + b = 0. In order to find the asymptotic behavior, we set |S′′| � (S′)2.

If S(x) ∼ Sa(x) is the dominant asymptotic behavior of S(x), we can set y(x) = eSa(x)+C(x). By
neglecting C ′′, one gets S′′a + (S′a + C ′)2 + a(S′a + C ′) + b = 0, which leads to the asymptotic
behavior of C.

Solutions

(a) Modified Bessel equation, (..) p. : one gets (S′)2 + 1
xS
′ −

(
1 + ν2

x2

)
= 0 and thus

S′ = − 1
2x ±

√
1 + 1+4 ν2

4x2
∼ − 1

2x ± 1. One get S(x) = −1
2 lnx± x+ cst and thus:

y(x) ∼ c1 x
−1/2 ex or y(x) ∼ c2 x

−1/2 e−x for x→∞

(b) Parabolic cylinder equation, (..) p. : one gets S(x) ∼ Sa(x) = ±1
4 x

2. By setting

y(x) = e
1
4
x2 +C(x), we get C ′ = −x

2 +
√

x2

4 − (ν + 1) ∼ −(ν+1)/4, leading to C(x) ∼ lnx−(ν+1).

Using the same method with y(x) = e−
1
4
x2 +C(x), we finally get the two asymptotic behaviour:

y(x) ∼ c1 x
−ν−1 ex

2/4 or y(x) ∼ c2 x
ν e−x

2/4 for x→∞.
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(c) Airy equation, (..) p. : one gets S(x) ∼ Sa(x) = ±2
3 x

3/2. By setting y(x) =

e
2
3
x3/2 + C(x), we get C ′ = −x1/2 − ε x1/2

√
1− 1

2 x
−3/2 with ε = ±1. Choosing ε = 1 to

avoid C ∼ Sa, we get C ′ ∼ − 1
4x and C ∼ ln(x−1/4) + cste. Using the same method with

y(x) = e−
2
3
x3/2 + C(x) but with ε = −1, we finally get the two asymptotic behaviour:
y(x) ∼ c1 x

−1/4 e
2
3
x3/2 or y(x) ∼ c2 x

−1/4 e−
2
3
x3/2 for x→∞.

.. Bessel functions

Exercice ., p.  and Example , p. 

Show that the Bessel function

Jν =
(x

2

)ν ∞∑
n=0

(−x2/4)n

n! Γ(ν + n+ 1)
(.)

is solution of the Bessel equation x2 y′′ + x y′ + (x2 − ν2) y = 0.

Show that Jν(x) = e−i ν π/2 Iν
(
x ei π/2

)
.

Is it correct to write y ∼ c1 x
−1/2 cos

(
x− 1

2ν π −
1
4 π
)
and y ∼ c2 x

−1/2 sin
(
x− 1

2ν π −
1
4 π
)
for

x→ +∞? Why?

We denote by Yν(x) the solution of the Bessel equation whose graph “closely resembles” to the
one of (2/π)1/2 x−1/2 sin

(
x− 1

2ν π −
1
4 π
)
. Why is it unique?

. Approximate Solution of Nonlinear Differential Equations

.. Critical points

Example , p.  and Figure ., p. 

Draw the trajectories of the Volterra equations ẋ1 = x1 − x1 x2 and ẋ2 = −x2 + x1 x2 in the
vicinity of its critical points. Draw approximatively the entire phase portrait.

Physical applications

Many physical applications lead to ordinary differential equations for a low number of degrees of
freedom. This is the case, for example, of the trajectory of particule in a fluid flow. Studying the
equilibria and the trajectories in their vicinity is a powerful tools to have a hint of the complete
dynamics.

. Asymptotic Expansion of Integrals

.. Watson’s Lemma

Example , p. 

An integral representation of the modified Bessel function K0(x) is

K0(x) = e−x
∫ ∞

0
(t2 + 2 t)−1/2 e−x t dt . (.)
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Using Watson’s Lemma, show the following asymptotic expansion of K0(x) for x→ +∞:

K0(x) ∼ e−x
∞∑
n=0

(−1)n
[Γ(n+ 1/2)]2

2n+1/2 n! Γ(1/2)xn+1/2
. (.)

.. Laplace’s method

Example (g) and Example , p.  and p.

The modified Bessel function Kν(x) has the following integral representation for x > 0:

Kν(x) =

∫ ∞
0

e−x cosh t cosh(ν t) dt . (.)

Using Laplace’s method, show that Kν(x) ∼
√

π
2x e

−x for x→ +∞.

The Gamma function Γ(x) has the following integral representation for x > 0:

Γ(x) =

∫ ∞
0

e−t tx−1 dt . (.)

Using Laplace’s method, show the Stirling’s formula Γ(x) ∼ xx e−x
√

2π
x for x→ +∞.

Formula

We recall that
∫ b
a f(t) exφ(t) dt ∼ 2 f(c) exφ(c) [−xφ(p)(c)]−1/p Γ(1/p) (p!)1/p/p for x → ∞ when

φ(t) can be approximated, in the vicinity of it maximum, by φ(c) + 1
p! (t − c)p φ(p)(c) if it is

reached for c ∈]a, b[. Since φ(c) is a maximum, we have p even and φ(p)(c) < 0.

.. Path deformation in the complex plane

Example , p.  and Figure . p. 

By deforming the integration path in the complex plane and using the Laplace’s method, show
that I(x) =

∫∞
0 ei x t

2
dt ∼ 1

2

√
π
x e

i π/4 for x→ +∞.

Proof

We consider IR(x) =
∫
C e

i x t2 dt =
∫ R

0 ei x t
2
dt and deform the path C in the complex plane such

that IR(x) =
∫
C1
ei x t

2
dt+

∫
C2
ei x t

2
dt (Figure .).

By setting t = s ei π/4 on C1 and t = R (cos θ + i sin θ) on C2, we get

IR(x) = ei π/4
∫ R

0
e−x s

2
ds−

∫ π/4

0
e−xR

2 sin θ e−i xR
2 cos θ Rdθ . (.)

Applying Cauchy inequality and Laplace’s method to the second integral, we get∣∣∣∣∣
∫ π/4

0
e−xR

2 sin θ e−i xR
2 cos θ Rdθ

∣∣∣∣∣ ≤ Rπ

4

∫ π/4

0
e−xR

2 sin θ dθ ∼ π

4xR
for x→ +∞ . (.)

When R→∞, the first integral reads

ei π/4
∫ R

0
e−x s

2
ds→ ei π/4

∫ ∞
0

e−x s
2
ds =

1√
2x

ei π/4
∫ ∞

0
e−u

2/2 ds =
1

2

√
π

x
ei π/4 . (.)
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C1
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Im(t)
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✓
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⇡/4

t

Figure .: Complex plane

.. Stationnary phase method

Example , p. 

Using the stationnary phase method, show that I(x) =
∫∞
−∞ cos(x t2− t)dt ∼

√
π

2x for x→ +∞.

Formula

We recall that
∫ b
a f(t) ei x ψ(t) dt ∼ f(a) exp

[
i xψ(a) + ε i π

2 p

] [
x
∣∣ψ(p)(a)

∣∣]−1/p
(p!)1/p Γ(1/p)/p

for x→∞, with ε = sign
[
ψ(p)(a)

]
, when ψ(t) can be approximated by ψ(a) + 1

p! (t− a)p ψ(p)(a)
in the vicinity of it extremum supposed to be reached for x = a.

Physical applications

The stationnary phase method is mandatory to explain the concept of group velocity of wave
packets. Given the D dispersion relation ω = Ω(k) where ω is the pulsation and k in the wave
superposition u(x, t) =

∫
IR f(k) ei [k x−Ω(k) t] dk, the asymptotic behavior of I(t) = u(v t, t) for

t→∞ is derived with the stationnary phase method where ψ(k) = k v−Ω(k). Since the behavior
of I only depends of the wave number kv such that Ω′(kv) = v, the quantity cg(k) = Ω′(k) is
called the group velocity.

.. Steepest descent method (optional)

Example , p.  and Example  p. 

Using the steepest descent method, show that:

(a) I(x) =
∫ 1

0 ln t ei x t dt ∼ − i lnx
x − i γ+π/2

x + i ei x
∑∞

n=1
(−i)n (n−1)!

xn+1 for x→ +∞, where Euler’s
constant is γ = −

∫∞
0 e−u lnu du = 0.5772...

(b) I(x) =
∫ 1

0 e
−4x t2 cos(5x t− x t3) dt ∼ 1

2 e
−x√π/x for x→ +∞

. Perturbations Series

.. Perturbation of an eigenvalue problem (optional)

Section ., p.  and Example , p. 
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We consider the Schrödinger equation −y′′ +
(
x2

4 + ε x
)
y = E y subject to the boundary con-

dition lim|x|→∞ y(x) = 0. In the harmonic potential case ε = 0, show that E0 = 1/2 is an
eigenvalue and y0(x) = e−x

2/4 an associated eigenfunction.

Using perturbation theory, show that E = 1/2 − ε2 + O(ε3) for ε → 0. Recover that result
through a translation for x.

Physical applications

In a lot of physical applications, one is often led to find the spectrum of a perturbed operator
A = A0 +εA1, where ε is a small parameter, knowing the spectrum of A0. Knowing an eigenvalue
λ0 of A0 and the associated eigenvector y0, the first order of the approximation λ = λ0 + ε λ1

with y = y0 + ε y1 leads to (A0 − λ0) y1 = −(A1 − λ0 )y1. Defining the adjoint A∗ of A by
< Ay, z >=< y,A∗ z > for all (y, z), where < ., . > is a scalar product to be chosen, the
compatibility condition of the first order equation leads to λ1 =< A1 y0, y

∗
0 > / < y0, y

∗
0 > where

y∗0 is an eigenvector A∗0 y∗0 = λ0 y
∗
0 of A∗0, supposed to be known. The same procedure can be

applied to go at higher order in ε.

. Boundary Layer Theory

.. Boundary layer

Example , p. 

We consider the differential equation ε y′′ + (1 + ε) y′ + y = 0 with the boundary conditions
y(0) = 0 and y(1) = 1. Find the exact solution.

For ε → 0, show that the outer solution satisfies y′out + yout = 0 with yout(0) = 0 and the inner
solution is such that Y ′′in + Yin = 0 with Yin(0) = 0 and Yin(+∞) = e with yin(x) = Yin(X)
and x = εX. Draw the matching between the inner and outer solutions. Write a uniform
approximation under the form yunif = yin + yout + ymatch.

Physical applications

The viscosity of fluid flows, when it is small, only act in small boundary layers close to walls. In
that case, the fluid can be consider as perfect (outer solution) and matching with viscous profiles
(inner solution) close to the walls.

. WKB Theory

.. Schrödinger equation

Example , p. 

We consider the Schrödinger equation ε2 y′′ = Q(x) y with Q(x) 6= 0 for the x considered. Show
that

y(x) ∼ c1Q
−1/4(x) exp

(
1

ε

∫ x

a

√
Q(t) dt

)
+ c2Q

−1/4(x) exp

(
−1

ε

∫ x

a

√
Q(t) dt

)
, (.)





provided ε S1 � S0, ε S2 � S1 and ε S2 � 1 for ε→ 0 with

S0(x) =

∫ x√
Q(t) dt, S1(x) = −1

4
lnQ(x) S2(x) =

∫ x
[

Q′′

8Q3/2
− 5 (Q′)2

32Q5/2

]
dt .

(.)

Physical applications

The WKB approach is widely used in optics. The first order describes the ray tracing of the
electromagnetic waves and is called the “geometrical optics approximation”. The second ordre
describes the amplitude of the electromagnetic waves and is calle the “physical optics approxima-
tion”. The small parameter ε is related to the wave number that is suppose to be small compared
the variation scale of

√
Q, relatif the refraction index. The integral in the approximation related

to the optical path.

.. Sturm-Liouville problem

Example , p. 

We consider the Sturm-Liouville problem y′′ + E (x + π)4 y = 0 with the boundary conditions
y(0) = y(π) = 0. Using the WKB theory, show that

En ∼
9n2

49π4
and yn(x) ∼

√
6

7π3

sin
[
n
(
x3 + 3x2 π + 3π2 x

)
/(7π2)

]
(π + x)

for n→∞ , (.)

are the eigenvalues and eigenvectors at large n with the normalization
∫ π

0 y2
n (x+ π)4 dx = 1.

.. Airy equation

Example , p. 

Using the WKB theory, show the solution of the Airy equations satisfies

y(x) ∼ c± x−1/4 e±2x3/2/3

(
1± 5

48
x−3/2

)
, (.)

for x→∞, where c+ and c− are arbitrary constants.

.. Turning point (optional)

Section ., p. 

We consider the Schrödinger equation ε2 y′′ = Q(x) y with boundary condition y(+∞) = 0 such
that Q(x) > 0 for x > 0, Q(x) < 0 for x < 0 and Q(x) ∼ a x for x→ 0 with a > 0. We assume
that Q(x)� x−2 for x→ ±∞. Show the approximations for ε→ 0:

yIII(x) = 2C [−Q(x)]−1/4 sin

[
1

ε

∫ 0

x

√
−Q(t) dt+ π/4

]
for x� −ε2/3 ,

yII(x) = 2C
√
π (a ε)−1/6 Ai

(
ε−2/3 a1/3 x

)
for |x| � 1 ,

yI(x) = C [Q(x)]−1/4 exp

[
−1

ε

∫ x

0

√
Q(t) dt

]
for x� ε2/3 ,





where C is an arbitrary constant. Draw schematically the solution.

Physical applications

Turning points describe the transition between oscillatory and expontial behavior of physical
waves. Matching these two behavior is an important problem. Intersesting phenomena such as
the tunnel effect in quantum mechanics can be described with this approach.

. Multi-Scale Analysis

.. Periodic solutions

Section ., p. , Example , p. 

We use the multiscale analysis y(t) ∼ Y0(t, εt) + ε Y1(t, εt) for ε→ 0 with:

Y0(t, τ) = R(τ)
[
ei θ(τ) ei t + e−i θ(τ) e−i t

]
. Show the following relations:

(a) Duffing equation: y′′ + y + ε y3 = 0: dR
dτ = 0 and dθ

dτ = 3R2/2.

(b) Rayleigh oscillator: y′′ + y = ε
[
y′ − 1

3 (y′)3
]
: 2 dR

dτ = R−R3 and dθ
dτ = 0.

Draw the shape of these solutions.

Physical applications

Amplitude equations are used to describe the nonlinear saturation of an instability, closed to its
threshold. The multi-scale analysis is one of several tools (e.g. normal forms) used to derive
these amplitude equations.

.. Mathieu equation (optional)

Section ., p. 

We use the multiscale analysis y(t) ∼ Y0(t, εt) for ε→ 0 with Y0(t, τ) = A(τ)ei
t
2 +A∗(τ)e−i θ(τ) e−i

t
2

for the Mathieu equation y′′+
[

1
4 + (a1 + 2 cos t) ε

]
y = 0. Show that |a1| = 1 is the limit for the

stability of the equilibrium y = 0.

Physical applications

The parametric instability is encountered when a parameter of an oscillating system is forced at
a frequency close to twice its natural oscillating frequency. This is the case of a pendulum which
length is oscillating. x







Chapter 

Training problems

The following problems are designed to be made without documents during two or three hours.

. First four chapters of the book

.. Frobenius expansions

We recall that if L(y) = x2 y′′+x p(x) y′+q(x) y with p(x) =
∑∞

n=0 pn x
n and q(x) =

∑∞
n=0 qn x

n,
for y = xα

∑∞
n=0 an x

n we have:

L(y) = xα P (α) a0 + xα
∞∑
n=1

[
P (n+ α) an +

n∑
k=1

(n− k + α) pk an−k +

n∑
k=1

qk an−k

]
xn

with P (X) = X (X − 1) + p0X + q0 = X2 + (p0 − 1)X + q0.

) Use the Frobenius method to solve the Bessel equation x2 y′′ + x y′ + (x2 − ν2) y = 0 in the
case 2 ν /∈ N.

.. Watson Lemma and stationnary phase method

) Find an equivalent of I(x) =
∫ 1

0 cos(x cos t) dt for x→ +∞.
) We consider u(x, t) =

∫∞
0 cos [k x− Ω(k) t] dk with Ω(k) =

√
k and define I(t) = u(t/2, t).

Show that I(t) ∼ α cos(t/2 + β)/
√
t for x→ +∞ and express the constants α and β.

.. Dominant balance

) Show that the solutions of y′′ =
√
x y for x > 0 satisfy either y1 ∼ c1 x

α1 exp(γ1 x
β1) or

y2 ∼ c2 x
α2 exp(γ2 x

β2) for x→ +∞ and give the values of the six constants (αi, βi, γi).

.. Critical points

We consider the dynamical system ẋ = sinx cos y, ẏ = − cosx sin y for (x, y) ∈ [0, π]2.

) Show that there are five equilibria and compute them.







) Study the stability of these equilibria.
) Draw the trajectories in the (x, y) definition square.

.. Steepest descent

) By deforming the integration path in the complex plane and using the Laplace method, show
that I(x) =

∫∞
0 e−i x t

2
dt ∼ 1

2

√
π
x e
−i π/4 for x→ +∞.

Corrigé

)One finds the two basic solutions:

y±(x) = a0 Γ(ν + 1)x±ν
∞∑
n=0

(
−1

2 x
)2n

n! Γ(±ν + n+ 1)

)Since I(x) =
∫ b
a f(t) ei x ψ(t) dt ∼ f(a) exp

[
i xψ(a) + ε i π

2 p

] [
x
∣∣ψ(p)(a)

∣∣]−1/p
(p!)1/p Γ(1/p)/p

for x→∞, with ε = sign
[
ψ(p)(a)

]
, when φ(t) can be approximated by φ(a) + 1

p! (t− a)p φ(p)(a),
in the vicinity of it extremum.

In the case p = 2, I(x) ∼ f(a) exp
[
i xψ(a) + ε i π4

]
[x |ψ′′(a)|]−1/2

√
π/2 for x → ∞, with

ε = sign [ψ′′(a)], when φ(t) can be approximated by φ(a) + 1
2(t− a)2 φ′′(a).

Here we have I(x) = Re
[∫ 1

0 f(t) ei x ψ(t) dt
]
with f(t) = 1 and ψ(t) = cos(t) = 1− t2/2 +O(t4).

Since ψ(0) = 1 and ψ′′(0) = −1, we have I(x) ∼ Re
(
eix−i π/4

√
π

2x

)
= cos(x− π/4)

√
π

2x . )We
consider J(t) =

∫ 1
0 f(k) ei tψ(k) dk with f(k) = 1 and ψ(k) = k/2−Ω(k). This phase is extremum

for ψ′(k) = 1/2 − Ω′(k) = (1 − 1/
√
k)/2, that is for k∗ = 1. Since ψ′′(1) = 1/4, we have

J(t) ∼ e−i t/2+i π/4
√

8π/t for t → +∞. Thus, I(t) = Re [J(t)] ∼ 2
√

2π/x cos(t/2 − π/4). We
have α = 2

√
2π and β = −π/4.

)Let y = exp(Sa + C) with C � Sa for x → ∞. The equation reads S′′a + C ′′ + (S′a +
C ′)2 =

√
x. Assuming S′′a � (S′a)

2, we get S′a = ±x1/4 leading to Sa = ±(4/5)x5/4 + cste
and S′′a = ±(1/4)x−3/4. The assumption S′′a � (S′a)

2 is thus valid. The equation now reads
±(1/4)x−3/4 + C ′′ ± 2x1/4C ′ + C ′2 = 0. Assuming C ′2 � x1/4C ′ and C ′′ � x1/4C ′, we have
C ′ = −(1/8)x−1 leading to C = −(1/8)Ln (x) + cste. The two assumptions on C are satisfied.
Thus, α1 = α2 = −1/8, γ1 = −γ2 = 4/5 and β1 = β2 = 5/4.

)The equilibria are A = (0, 0), B = (0, 2π), C = (π, π), D = (π, 0) and I = (π/2, π/2).

)The jacobian matrix reads J11 = cosx cos y, J12 = − sinx sin y, J21 = sinx sin y and
J22 = − cosx cos y. I is marginal while A, B, C and D are unstable.

)The trajectories are circles close to I and quasi-squares close to ABCD.

)Same as in the course but with and angle −π/4 instead of π/4 for the complex integration
path.





. Exam given in 

.. Ordinary Differential Equations and Green function

We consider the ordinary differential equation y′′ − y = f for x ∈ R with f(x) = 1/ cosh(x) and
the boundary conditions y(±∞) = 0.

) Use the variation of parameters to solve this problem.
) Use the Green function method to solve this problem and compare.

.. Frobenius expansions

We recall that if L(y) = x2 y′′+x p(x) y′+q(x) y with p(x) =
∑∞

n=0 pn x
n and q(x) =

∑∞
n=0 qn x

n

we have

L

(
xα

∞∑
n=0

an x
n

)
= xα P (α) a0+xα

∞∑
n=1

[
P (n+ α) an +

n∑
k=1

(n− k + α) pk an−k +
n∑
k=1

qk an−k

]
xn

with P (X) = X (X − 1) + p0X + q0 = X2 + (p0 − 1)X + q0.

We consider the modified Bessel equation L(y) = x2 y′′+x y′−x2 y = 0. We define the functions
y(x, α) = xα

∑∞
n=0 an(α)xn for α ∈ C where a0 is a given constant, a1 = 0 and an+2(α) =

an(α)/(α+ n)2 for n ∈ N.

) Show that I0(x) =
∑∞

n=0

(
1
2x
)2n

/(n!)2 is a solution of the given modified Bessel equation.
) Show that d

dαa2p(0)/a2p(0) = −up where up =
∑p

k=1 k
β where β is a constant and give the

value of β. Deduce that ∂
∂αy(x, 0) = a0 Ln (x) I0(x)− a0

∑∞
n=1 un

(
1
2x
)2n

/(n!)2.

) We define the function K0(x) = −[Ln (1
2x) + γ] I0(x) +

∑∞
n=1 vn

(
1
2x
)2n

/(n!)2 where γ is
the Euler constant (γ ∼ 0.5772) and vn =

∑n
k=1(1/k). Show that K0(x) is a solution of the

given modified Bessel equation and is independant of I0(x).

.. Irregular singular points

) Show that the solutions of y′′ = y
√
x for x > 0 satisfy either y1 ∼ c1 x

α1 exp(γ1 x
β1) or

y2 ∼ c2 x
α2 exp(γ2 x

β2) for x→ +∞ and give the values of the six constants (αi, βi, γi).

.. Laplace method

We recall that
∫ b
a f(t) exφ(t) dt ∼ 2 f(c) exφ(c) [−xφ(p)(c)]−1/p Γ(1/p) (p!)1/p/p for x → ∞ when

φ(t) can be approximated, in the vicinity of it maximum, by φ(c) + 1
p! (t − c)p φ(p)(c) if it is

reached for c ∈]a, b[. Since φ(c) is a maximum, we have p even and φ(p)(c) < 0.

) The Gamma function is defined by Γ(x) =
∫∞

0 e−u ux−1 du for x > 0. Using the change of
variable u = x t and the Laplace method, show the Stirling’s formula Γ(x) ∼ αxx e−x/

√
x

for x→ +∞ and give the value of the constant α.





.. Stationnary phase method

We recall that
∫ b
a f(t) ei x ψ(t) dt ∼ f(a) exp

[
i xψ(a) + ε i π

2 p

] [
x
∣∣ψ(p)(a)

∣∣]−1/p
(p!)1/p Γ(1/p)/p

for x→∞, with ε = sign
[
ψ(p)(a)

]
, when ψ(t) can be approximated by ψ(a) + 1

p! (t− a)p ψ(p)(a)
in the vicinity of it extremum supposed to be reached for x = a.

) Find an equivalent of I(x) =
∫ 1

0 cos(x cos t) dt for x→ +∞.

.. Critical point

We consider the dynamical system ẋ = 1
2x−

1
2x

3 for x(t) ∈ IR with the initial condition x(0) = x0.

) Show that there are three equilibria and compute them.
) Study the stability of these equilibria.
) Draw the trajectories in IR.
) Draw, schematically, the graph of x(t) as a function of t for various initial conditions x0 ∈ IR.

.. Multi-scale analysis

We consider the Van der Pol oscillator y′′ + ε (y2 − 1) y′ + y = 0 where y(t) is determined by the
initial condition y(0) = y0 and y′(0) = v0. We use the multiscale analysis y(t) = Y (t, ε t) for
ε→ 0 with Y (t, τ) = Y0(t, τ) + ε Y1(t, τ) +O(ε2).

) Show that Y0(t, τ) = A(τ) ei t +A∗(τ) e−i t where A(τ) = R(τ) ei θ(τ).
) Write an equation dA

dτ = αA (1 − |A|2) to eliminate the secular term of the equation for Y1

at the second order of the asymptotic expansion and give the values of the real constant α.
) Draw the graph of the fonction R(τ) for R(0) < 1 and then for R(0) > 1.
) Write the expression of the asymptotic solution y(t) using the function R at the dominant

order (Y0 only) and draw its graph as a function of t. Express R(0) and θ(0) as functions of
y0 and v0.

) Draw the trajectories in the (y, y′) plane.

.. Boundary-layer theory

We consider the equation ε y′′ + a(x) y′ + b(x) y = 0 with a(x) = x2 + 1 and b(x) = −x3 for
x ∈ [0, 1] with y(0) = y(1) = 1 in the limit ε→ 0.

The boundary-layer method for this type of equations consists in finding an outer solution yout(x)
valid on the whole interval, excepted in a “boundary layer” whose size tends to zero when ε→ 0.

If a(x) > 0, as this is the case for this example, we admit that the boundary layer develops in the
vicinity of x = 0. In this layer, the inner solution is obtained by setting yin(x) = Yin(X) with
x = εX with the following boundary conditions: Yin(0) = y(0) and limX→∞ Yin(X) = yout(0).

) Compute the outer solution yout(x).
) Compute the inner solution yin(x).
) Show that exists a constant ymatch such that yunif (x) = yout(x)+yin(x)−ymatch is a uniform

approximation. Give the final expression of yunif (x). Draw schematically y(x) for a small ε.





Corrigé

)Using the notations of the course, we have u′1 = −f y2/W = e−x/(ex + e−x) and u′2 =
f y1/W = −ex/(ex + e−x). Changing into the variable s = e−x for u1 and s = ex for u2, one
gets u1 = −

∫ e−x
s

s2+1
ds = −Ln

√
e−2x + 1 + C1 and u2 = −

∫ ex s
s2+1

ds = −Ln
√
e2x + 1 +

C2. The boundary conditions lead to C1 = C2 = 0 and one can check that the solution y =
−ex Ln

√
e−2x + 1 − e−x Ln

√
e2x + 1 satisfies y(±∞) = 0. )The Green function is G(x) =

e−|x|/2 and y =
∫
R f(s)G(x− s) ds reads y(x) = −

∫ x
−∞

es−x

es+e−s ds−
∫∞
x

e−s+x

es+e−s ds. This leads to
the previously found solution.

)Since p0 = 1 and q0 = ν2 for the modified Bessel equation, we have P (X) = X2− ν2. For this
equation, we have

L

(
xα

∞∑
n=0

an x
n

)
= xα P (α) a0 + xα P (α+ 1) a1 x+ xα

∞∑
n=2

{
[(n+ α)2 − ν2] an − an−2

}
xn .

For ν = 0, X = 0 is a double root. For this case, we note that L[y(x, α)] = xα P (α). The
function y(x, 0) =

∑∞
n=0 an(α)xn with a2p = (2p p!)−2 a0 for n = 2p even and a2p+1 = 0 for

n = 2p + 1 even is solution of equations. I0(x) is such a solution with a0 = 1. )One can
compute that a2p(α) = a0

∏p
k=1 1/(α + 2 k)2 for n = 2p even and a2p+1(α) = 0 for n = 2p + 1

even. We thus have a′2p(α)/a2p(α) = −2
∑p

k=1 1/(α+ 2 k) and thus a′2p(0) = −a2p(0)
∑p

k=1 1/k.
Thus ∂

∂αy(x, 0) = a0 Lnx I0(x)−a0
∑∞

n=1 un
(

1
2x
)2n

/(n!)2 with un =
∑n

k=1 1/k. )We note that
L[ ∂∂αy(x, α)] = P (α)xα Lnx+P ′(α)xα. Since P (0) = P ′(0) = 0, we have L[ ∂∂αy(x, 0)] = 0. Thus
Choosing a0 = −1, one has K0(x) = ∂

∂αy(x, 0) + (Ln 2 − γ) I0(x). This solution is independant
of I0(x) since ∂

∂αy(x, 0) and I0(x) are independant.

)We suppose that y = exp(Sa+C) with C � Sa for x→ +∞. The equation reads (S′′a +C ′′) +
(S′a +C ′)2 = x1/2 and is approximated, at the dominant order, by S′′a + (S′a)

2 = x1/2. Assuming
that S′′a � (S′a)

2, we have S′a = ±x1/4 and S′′a = ±1
4 x
−3/4 is indeed smaller than (S′a)

2 = x1/2 for
x→∞. The next order reads S′′a +C ′′ + 2S′aC

′ + (C ′)2 = ±1
4 x
−3/4 +C ′′ ± 2x1/4C ′ + (C ′)2 =

0. Assuming C ′′ � x−3/4 and (C ′)2 � x−3/4, one gets C ′ = −1
8 x
−1, which satisfies theses

assumptions. Since Sa = ±4
5 x

5/4 +constant and C = −1
8Lnx, we have y1 ∼ c1 x

−1/8 exp(4
5 x

5/4)

and y2 ∼ c2 x
−1/8 exp(−4

5 x
5/4). Thus, α1 = α2 = −1/8, β1 = β2 = 5/4 and γ1 = −γ2 = 4/5.

)The change of variable u = x t leads to Γ(x) = x
∫∞

0 exp[−x t+(x−1)Ln (xt)] dt. This can be
written under the form Γ(x) = xx

∫∞
0

1
t exp[xφ(t)] dt with φ(t) = Ln t− t. Since φ′(t) = 1/t− 1

and φ′′(t) = −1/t2, φ(t) is maximum for t = 1 with φ(1) = −1 and φ′′(1) = −1. Applying the
given formula for p = 2, one get Γ(x) ∼ xx e−x

√
2π/x. Thus α =

√
2π.

)We have I(x) = Re
[∫ 1

0 f(t) ei x ψ(t) dt
]
with f(t) = 1 and ψ(t) = cos(t) = 1 − t2/2 + O(t4).

Since ψ(0) = 1 and ψ′′(0) = −1, we have I(x) ∼ Re
(
eix−i π/4

√
π

2x

)
= cos(x− π/4)

√
π

2x .

)The equilibria are xe ∈ {−1, 0, 1}. )The stability of the equilibria of ẋ = f(x) depend on
the signe of f ′(xe) = 1

2 −
3
2 x

2
e. The equilibrium xe = 0 is stable since f ′(0) = 1/2 > 0. The

equilibria xe = ±1 are stable since f ′(±1) = −1 < 0. )The trajectoires are : ] −∞, 1[ with
increasing x, {−1}, ]− 1, 0[ with decreasing x, {0}, ]0, 1[ with increasing x, {1} and ]1,∞[ with
decreasing x. )For x0 ∈]0, 1[, x(t) is increasingly converging towards 1 for large t, x(t) = 1 is
constant for x0 = 1, for x0 ∈]1,∞[, x(t) is decreasly converging towards 1. The symetry x→ −x
leads to the behavior or the other curves.

)We have y′(t) = ∂Y
∂t (t, ε t)+ε ∂Y∂τ (t, ε t) = ∂Y0

∂t (t, ε t)+O(ε) and y′′(t) = ∂2Y
∂t2

+2 ε ∂2Y
∂t ∂τ +ε2 ∂2Y

∂τ2
=





∂2Y0
∂t2

+ε
[
∂2Y1
∂t2

+ 2 ∂2Y0
∂t ∂τ

]
+O(ε2). At the dominant order, the equation reads ∂

2Y0
∂t2

+Y0 = 0, leading

to Y0(t, τ) = A(τ) ei t+A∗(τ) e−i t. At the next order, one gets ∂
2Y1
∂t2

+Y1 = −2 ∂2Y0
∂t ∂τ +∂Y0

∂t (Y 2
0 −1) =

−2(i dAdτ e
it − i dAdτ

∗
e−it) + (i A eit − i A∗ e−it)(1 − |A|2 + A2 e2it + A∗2 e−2it) = F1(A,A∗) eit +

F−1(A,A∗) e−it +F3(A,A∗) e3it +F−3(A,A∗) e−3it with F1(A,A∗) = i (−2dAdτ +A− |A|2A). We
impose F1(A,A∗) = 0 to eliminate the secular term, leading to dA

dτ = 1
2(A − |A|2A). Thus,

α = 1/2. )We have dR
dτ = 1

2R −
1
2R

3. For R(0) ∈]0, 1[, R(τ) is increasingly converging
towards 1 for large τ . For R(0) ∈]1,∞[, R(τ) is decreasingly converging towards 1 for large
τ . )The graph of R(τ) have been treated in a previous question. )Since dθ

dτ = 0 leads to
θ(τ) = θ(0), we have obtained y(t) = 2R(ε t) cos[t + θ(0)] + O(ε). The initial conditions leads
to R(0) = 1

2

√
y2

0 + v2
0 and θ(0) = −atan (v0/y0). )Trajectories are spirals converging towards

the limit cycle.

)Setting ε in the equation, we get y′out/yout = −b/a = x3/(x2 + 1) = x − x/(x2 + 1). Thus
yout(x) = A exp(x2/2)/

√
x2 + 1. The boundary condition yout(1) = 1 leads to A =

√
2/e. Thus

yout(x) =
√

2/e exp(x2/2)/
√
x2 + 1. )Setting yin(x) = Yin(x/ε) leads to Y ′′in(X)+Yin(X) = 0

at the leading order. The solution Yin(X) = B exp(−X)+C must satisfy the boundary conditions
Yin(0) = 1 and limX→∞ Yin(X) = yout(0) =

√
2/e. We thus have B = 1−

√
2/e and C =

√
2/e.

Thus yin(x) = (1−
√

2/e) exp(−x/ε)+
√

2/e )Setting ymatch = −
√

2/e, we obtain the uniform
approximation yunif (x) = (1−

√
2/e) exp(−x/ε)+

√
2/e exp(x2/2)/

√
x2 + 1. The graph of y(x)

is made of a rapidly decreasing curve from 1 to y(0+) =
√

2/e in the vicinity of x = 0 followed
by an increasing curve up to y(1) = 1.


