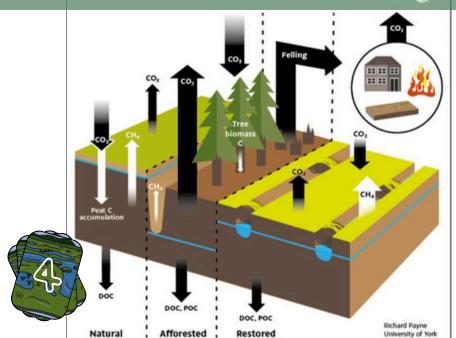


A water-saturated environment characterized by the presence, or formation, of a soil composed of peat, or very little decomposed organic matter.

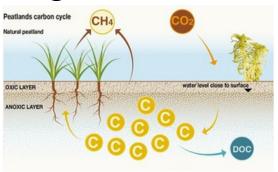
Human impacts

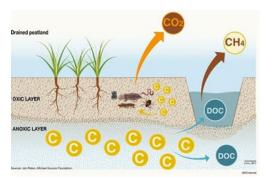
Many human activities in peatlands such as drainage or cultivation cause changes in ecological processes, ecosystem structure and species composition. These result in land loss from subsidence, fires and their associated haze, reduced water quality, loss of unique biodiversity, loss of the potential for the sustainable use of peatlands (paludiculture), as well as a contribution to global warming caused by loss of peat carbon stocks

Carbon dioxide emissions from peatland drainage, fires and exploitation are estimated to currently be at least 3000 million tonnes a year equivalent to more than 10% of the global fossil fuel emissions.



Peatlands play a special role in maintaining biodiversity at the genetic level due to habitat isolation and habitat heterogeneity, and at the ecosystem level due to their ability to self-regulate and adapt to different physical conditions. They are important temporary habitats for numerous 'dryland' species and animals (birds, reptiles) during droughts and frosts, providing food, shelter and breeding grounds.


Peat deposits preserve the remains of plants and animals living in the peatland, providing an archive of biodiversity information from previous epochs. (Ex: willow segment dating from 3900 BC discovered in the peat bogs of Exmoor, England)

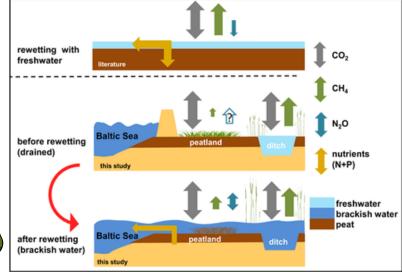

Peatlands carbon cycle

Impact of drainage on peatlands' carbon cycle Drained peatlands release CO2 stored for thousands of years

DOC: Dissolved Organic carbon; POC: Particulate Organic Carbon

Best long term carbon storage; peatlands contain at least 550 Gt of carbon which is the equivalent of 30% of all qlobal soil carbon, 75% of all atmospheric carbon.

Peat's Transformation



The accumulated organic matter, mainly plant residues, undergoes a transformation process and begins to solidify to form what is known as peat.

Peatland Water balance

Peatland water balance and Water Table Level (WTL) are driven by climatic forcing and site-specific factors including vegetation characteristics, soil properties and topography, as well as artificial drainage and changes in land-use and management. A continuously maintained tree cover with significant evapotranspiration capacity could enable optimizing WTL from both tree growth and environmental perspectives.

The main mode of recharge in peat wetlands is rainfall, which accounts for 60 per cent of the total recharge, and the main mode of outflow is ditch drainage, with the highest percentage of drainage reaching 53 per cent, followed by submersible evaporation, with an outflow percentage of 26 per cent.

Climate change scenarios suggest major changes in temperature, precipitation and other phenomena that will have significant impacts on the peatland carbon store, greenhouse gas flux and biodiversity. Many weather events like important rainfalls variability, fires, storms, sea level rises or the dessication of peat surfaces are likely to increase peatlands erosion, so their degradation. Climate change also disturbs the hydrological regime (community and soil chemical composition) and the carbon cycling in peatlands.

Peatlands reduce atmospheric warming by reflecting more incoming solar radiation than forested dryland regions

Remediation of peatlands

No planting on deep peat Planting of crops only

on shallow peat.

Canal blocking

Artificial canals in peatland are blocked reducing drainage and fire risk

Tree planting

Reforestation of the deep peat zone can support livelihoods through timber and non-timber forest products

Habitat protection

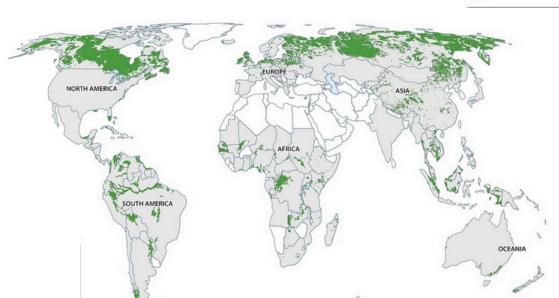
Establishment of conservation area in deep peat (deeper than 3m)

Carbon sequestration

Raised water table - leading to net carbon sequestration and reduced fire risk

Livelihood support

Agricultural options that are sustainable


Raising awareness is the first step for the beginning of peatlands' restoration

Peatlands are worldwide

Sources: Yu, Zicheng, et al. "Global Peatland Dynamics since the Last Glacial Maximum" Geophysical Research Letters, vol. 37, no. 12, 2010.

Map by Levi Westerveld / GRID-Arendal (2017)

